格林公式的讨论及其应用摘要牛顿-莱布尼兹(Newton-Leibniz)公式、格林(Green)公式、高斯(Gauss)公式和斯托克斯(Stokes)公式是积分学中的几个非常重要的公式,分别建立了原函数与定积分、曲线积分与二重积分、曲线积分与三重积分、曲线积分和曲面积分之间的联系,它们除了在数学上用来计算多元函数的积分有很大用处之外,在其他的领域也有很多重要的应用。 就这四大公式与物理学的相关内容展开,结合场论的相关内容,介绍它们在各个方面的应用,帮助人们更好地理解并且更准确地应用牛顿-莱布尼兹公式、格林公式、高斯公式和斯托克斯公式。关键词:牛顿-莱布尼兹公式;格林公式;高斯公式;斯托克斯公式;应用Discussion and application of Green's formulaAbstractNewton Leibniz formula, green formula, Gauss formula and Stokes formula are several very important formulas in integral science. The relations between the original function and the definite integral, the curve integral and the double integral, the curve integral and the triple integral, the curve integral and the curved area integral are established respectively. They are not only used to calculate mathematically The integral of multivariate function is very useful, but also has many important applications in other fields.Based on the four formulas and Physics related content, combined with the field theory related content, this paper introduces their application in various aspects, to help people better understand and more accurately apply Newton Leibniz formula, green formula, Gauss formula and Stokes formula.Keywords: Newton Leibniz formula; Green formula; Gauss formula; Stokes formula; application目录一、引言................................................................................................................................................................1二、 牛顿-莱布尼兹(Newton-Leibniz)公式的应用.......................................................................................1(一) 牛顿-莱布尼...