有理数的乘除(提高)1.会根据有理数的乘法法则进行乘法运算,并运用相关运算律进行简算;2. 理解乘法与除法的逆运算关系,会进行有理数除法运算;3. 巩固倒数的概念,能进行简单有理数的加、减、乘、除混合运算;4. 培育观察、分析、归纳及运算能力. 【要点梳理】要点一、有理数的乘法1.有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同 0 相乘,都得 0.要点诠释: (1) 不为 0 的两数相乘,先确定符号,再把绝对值相乘. (2)当因数中有负号时,必须用括号括起来,如-2 与-3 的乘积,应列为(-2)×(-3),不应该写成-2×-3.2. 有理数的乘法法则的推广:(1)几个不等于 0 的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正;(2)几个数相乘,假如有一个因数为 0,那么积就等于 0. 要点诠释:(1)在有理数的乘法中,每一个乘数都叫做一个因数. (2)几个不等于 0 的有理数相乘,先根据负因数的个数确定积的符号,然后把各因数的绝对值相乘. (3)几个数相乘,假如有一个因数为 0,那么积就等于 0.反之,假如积为 0,那么至少有一个因数为 0.3. 有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.要点诠释:(1)在交换因数的位置时,要连同符号一起交换.(2)乘法运算律可推广为:三个以上的有理数相乘,可以任意交换因数的位置,或者把其中的几个因数相乘.如 abcd=d(ac)b.一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.如 a(b+c+d)=ab+ac+ad.(3)运用运算律的目的是“简化运算”,有时,根据需要可以把运算律“顺用”,也可以把运算律“逆用”.要点二、有理数的除法1.倒数的意义: 乘积是 1 的两个数互为倒数. 要点诠释:(1)“互为倒数”的两个数是互相依存的.如-2 的倒数是,-2 和是互相依存的; (2)0 和任何数相乘都不等于 1,因此 0 没有倒数; (3)倒数的结果必须化成最简形式,使分母中不含小数和分数; (4)互为倒数的两个数必定同号(同为正数或同为负数).2. 有理数除法法则:1212法则一:除以一...