【巩固练习】一.选择题1.(2024•台湾)计算(2x24﹣ )(2x1﹣ ﹣x)的结果,与下列哪一个式子相同?( )A.﹣x2+2 B.x3+4 C.x34x﹣+4 D.x32x﹣22x﹣+42.下列各题中,计算正确的是( ).A. B.C . D.3. 假如与-2的和为,1+与-的差为,那么化简后为( )A.B.C.D.4. 如图,用代数式表示阴影部分面积为( ).A. B. C.D.5.结果是的式子是( ).A .(+4)( +2)2B .(+4)C .(-4) D .(+4)6. 已知:,则的值为( ) A.-1 B.0 C. D.1二.填空题7. 已知,则=___________. 233266mnm n 332299m nmnm n 232298m nmnm n 323321818mnm n2x2ym2y22xn24mn22684xy221084xy22684xy221084xyabacbcacbc cacbc31216xxxxx22xxx22xxx22x 222440,23abab2122 a bb1220mn332()48mmn mnn8.(2024 春•无锡校级期中)假如(x+1)(x22ax+a﹣2)的乘积中不含 x2项,则 a= .9. 之积中含项的系数为 .10.(2024 春•莘县期末)若(am+1bn+2)•(a2n﹣1b2n)=a5b3,则 m+n 的值为 .11. 观察下列各式:;;;根据这些式子的规律,归纳得到: .12. 把展 开 后 得, 则 三.解答题13.(2024 春•聊城校级月考)计算(1)(﹣2a2b)2•( ab)3(2)已知 am=2,an=3,求 a2m+3n的值.14.先阅读后作答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如: =,就可以用图 1 的面积关系来说明.① 根据图 2 写出一个等式 ;② 已知等式:=,请你画出一个相应的几何图形加以说明.15.已知的展开式中不含和项,求的值. 322322(4235)(233)xx yxyyxxyy32x y22()()xy xyxy2233()()xy xxyyxy322344()()xy xx yxyyxy43223455()()xy xx yx yxyyxy123221()()nnnnnxy xxyxyxyy……62)1( xx0122101011111212......axaxaxaxaxa024681012aaaaaaa2abab2223aabbxpxq2xpq xpq2283xpxxxq2x3xpq、【答案与解析】一.选择题1. 【答案】D; 【解析】(2x24﹣ )(2x1﹣ ﹣x)=(2x24...