如何提高设计能力以及应对研发挑战 在具体设计过程中,EMI/EMC、低噪声设计、RF 设计、信号处理、电源管理等仍是困扰最多工程师的最主要技术挑战;在项目层面的挑战方面,"成本制约"高居榜首,并且比例有所提高,"缺乏先进的测试和测量仪器"今年跃居第二,紧跟其后的"对相关标准不理解"与"缺乏最新器件的信息"比例相当(见表 2)。本刊特别邀请一些具有深厚技术背景的业界资深专家,来分享他们对提高设计能力以及应对各种挑战的独到见解。这些专家分别来自测试设备厂商、领先半导体和相关技术供应商以及本地同处研发一线的系统厂商,可以说颇具权威性和代表性。 我们可以看到 RF 设计的一个进展趋势就是越来越多的部分会通过数字电路来实现,这就需要精通数字和射频微波的综合型人才;另一方面,研发的手段也需要更新,包括仿真工具和测试验证手段,这往往要结合工程师的多年经验才能充分发挥其功效,因为任何一个细微的变化都可能引起设计质量的改变,比如对于设计验证,我们可能会使用探头连接方式来测试,任何探头都会对被测对象带来负载效应,若能得到探头及其连接附件的仿真模型(如 SPICE model),则可以仿真其负载效应。 对于低噪声电路设计的验证,我们要清楚测试设备本身的噪声是多大。无线通信设备的调制和解调部分可能完全用数字部分实现,手边的逻辑分析仪等工具是否支持星座图测试、EVM 测试就变得很关键;而对于 FPGA 设计,能否验证其内部节点和外围电路之间的实时互动关系是很重要,选择适当的 FPGA 和测试设备支持 insight 调试变得相对重要。 高速电路设计的测试和验证很困难,许多芯片封装是 BGA 的形式,无法探测到一些关键信号,同时对于一些高速信号,标准上的定义往往是针对芯片管脚,而您能接触到的测试点往往是距管脚有一段距离,其间可能会有电容或一段传输线,如何能得到无法直接触及的点的波形非常关键;还有一种情况,在芯片管脚处测得的信号眼图是闭合的,但实际上,电路系统运行正常,这可能是因为在芯片内部会对信号进行专门的 DSP 处理,处理以后的眼图是完全张开的,只是由于这一部分完全用数学的方法实现,设计者无法直接探测而已,如何解决这类问题呢,工程师可以结合仿真软件和测量工具,将建模、仿真分析、实际量测融为一体,根据实际测量点得波形推断其它点的波形,或推断经过某种特别数学处理之后的波形。 很多情况下,我们受到经费的限制,无法得到很高级的仪器,但这并不意味着无法...