一、相加相减法【点拨】:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,相加求出整个图形的面积.或者将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.【例题 1】:求组合图形的面积。(单位:厘米)【分析与解答】:上图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.4 三 2=2(米)4X4+2X2X3.14 三 2=22.28(平方厘米)【例题 2】:长方形长 6 厘米,宽 4 厘米,求阴影部分的面积。【分析与解答】:上图中,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.4^2=2(米)6X4—2X2X3.14 三 218.28(平方厘米)二、用比例知识求面积【点拨】:利用图形之间的比例关系解题。【例题 3】一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30 公顷,图中阴影部分的面积是多少?1513■30【分析与解答】:因为阴影部分也是一长方形,所以只要求出它的长、宽是多少就行,为此设它的长、宽分别为 a、b,面积为 18 公顷的长方形的长、宽分别为 c、d.1318cab33因为(aXc):(dXc)=(aXb):(dXb),a:d=15:18=阴影面积:30,阴影面积为 15X30 三 18=25(公顷)。三、等分法【点拨】:根据所求图形的对称性,将所求图形面积平均分成若干份,先求出其中的一份面积,然后求总面积。【例题 4】:求阴影部分的面积(单位:厘米)【分析与解答】:把原图平均分成八分,就得到下图,先求出每个小扇形面积中的阴影部分:3.14X22^4-2X2^2=1.14(平方厘米)阴影部分总面积为:1.14X8=9.12(平方厘米)四、等积变形【点拨】:将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。【例题 5】:计算下图中的阴影部分面积。(单位:厘米)【分析与解答】:观察形,如果把空白的四部分剪下,组合在一起,可以拼成一个半径是3 分米的圆形,这样图中的四块阴影部分的面积就可以从正方形面积中减去这个圆的面积求出。列式:6X6-3X3X3.14=26.58 平方厘米五、割补法【点拨】:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.【例题 6】:如图:长方形长 8 厘米,求阴影部分的面积。【分析与解答】:阴影图形是不规则图形,没有办法直接通过面积公式求出。但是可以观察到,如果把右上角的阴影部分割补到左边虚线部...