问题描述:给定 n 个矩阵:A1,A2,...,An,其中 Ai与 Ai+1是可乘的,i=1,2...,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。 问题解析:由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用 2 个矩阵相乘的标准算法计算出矩阵连乘积。 完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积 A 是完全加括号的,则 A 可表示为 2 个完全加括号的矩阵连乘积 B 和 C 的乘积并加括号,即 A=(BC) 例如,矩阵连乘积 A1A2A3A4有 5 种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。 看下面一个例子,计算三个矩阵连乘{A1,A2,A3};维数分别为10*100 , 100*5 , 5*50 按此顺序计算需要的次数((A1*A2)*A3):10X100X5+10X5X50=7500 次,按此顺序计算需要的次数(A1*(A2*A3)):10*5*50+10*100*50=75000 次 所以问题是:如何确定运算顺序,可以使计算量达到最小化。 算法思路: 例:设要计算矩阵连乘乘积 A1A2A3A4A5A6,其中各矩阵的维数分别是: A1:30*35; A2:35*15; A3:15*5; A4:5*10; A5:10*20; A6:20*25 递推关系: 设计算 A[i:j],1≤i≤j≤n,所需要的最少数乘次数 m[i,j],则原问题的最优值为 m[1,n]。 当 i=j 时,A[i:j]=Ai,因此,m[i][i]=0,i=1,2,…,n 当 i