外文翻译 An adaptive dynamic controller for autonomous mobile robot rajectory trackingabstract This paper proposes an adaptive controller to guide an unicycle-like mobile robot during trajectory tracking. Initially, the desired values of the linear and angular velocities are generated, considering only the kinematic model of the robot. Next,such values are processed to compensate for the robot dynamics, thus generating the commands of linear and angular velocities delivered to the robot actuators. The parameters characterizing the robot dynamics are updated on-line, thus providing smaller errors and better performance in applications in which these parameters can vary, such as load transportation. The stability of the whole system is analyzed using Lyapunov theory, and the control errors are proved to be ultimately bounded.Simulation and experimental results are also presented, which demonstrate the good performance of the proposed controller for trajectory tracking under different load conditions. 1. Introduction Among different mobile robot structures, unicycle-like platforms are frequently adopted to accomplish different tasks, due to their good mobility and simple configuration. Nonlinear control for this type of robot has been studied for several years and such robot structure has been used in various applications,such as surveillance and floor cleaning. Other applications, like industrial load transportation using automated guided vehicles (AGVs) automatic highway maintenance and construction, and autonomous wheelchairs, also make use of the unicycle-like structure. Some authors have addressed the problem of trajectory tracking, a quite important functionality that allows a mobile robot to describe a desired trajectory ...