I矩阵在解线性方程组中的应用摘要线性方程组的求解是代数学中一个比较重要的内容. 线性方程组求解过程中,掌握各种求解线性方程组的方法是至关重要的. 基于线性方程组和矩阵之间的联系,可以用线性方程组系数和常数项所构成的行列式矩阵来研究线性方程组的求解问题. 本文主要讨论矩阵的秩在方程组的解的判断中的应用、矩阵的初等变换在解线性方程组中的应用. 关键词: 矩阵;线性方程组;矩阵的秩;初等变换IIThe Application of Matrix in Solving Linear EquationsABSTRACTThe solution of linear equations is an important part of algebra. In the process of solving linear equations, it is very important to master various methods of solving linear equations. Based on the relationship between linear equations and matrix, the determinant matrix composed of coefficient and constant term of linear equations can be used to study the solution of linear equations. This paper mainly discusses the application of the rank of matrix in the judgment of the solution of equations and the application of the elementary transformation of matrix in the solution of linear equations.Keywords: matrix;linear;equations;rank of matrix;elementary transformation III目录摘要...........................................................................................................................................IABSTRACT.............................................................................................................................II一、引言..................................................................................................................................1二、线性方程组的有关概念...................................................................................................11. 线性方程组的定义...........................................................................................................12. 线性方程组的一般解法......................................................................