1数学思想方法专题知识点归纳:常用的数学思想1.整体思想从整体上去认识问题、思考问题,常常能化繁为简、变难为易.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等2.分类讨论思想在数学中,我们常常需要根据研究对象性质的差异。分各种不同情况予以考察,这是一种重要数学思想方法和重要的解题策略,引起分类讨论的因素较多,归纳起来主要有以下几个方面:(1)由数学概念、性质、定理、公式的限制条件引起的讨论;(2)由数学变形所需要的限制条件所引起的分类讨论;(3)由于图形的不确定性引起的讨论;(4)由于题目含有字母而引起的讨论。3.数形结合思想在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形”在一定条件下可以相互转化、相互渗透。4.函数与方程的思想方程是研究数量关系的重要工具,在处理生活中实际问题时,根据已知与未知量之间的联系及相等关系建立方程或方程组,从而使问题获得解决的思想方法称为方程思想.而函数的思想是用运动、变化的观点,研究具体问题中的数量关系,再用函数的形式把变量之间的关系表示出来.5.转化思想转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。第 1 讲整体思想1.(江苏盐城)已知 a~b—1,则代数式 2a—2b—3 的值是()A.-1B.1C.-5D.52.(山东济南)化简 5(2x—3)+4(3—2x)结果为()2A.2x—3B.2x+9C.8x—3D.18x—33. (浙江杭州)当 x——7 时,代数式(2x+5)(x+1)—(x—3)(x+1)的值为4.(江苏苏州)若 a=2,a+b=3,贝 Ua2+ab=.x+2y=4k+1,5•已知{「,且 0