电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

信息与计算科学-人员安排问题的讨论论文

信息与计算科学-人员安排问题的讨论论文_第1页
信息与计算科学-人员安排问题的讨论论文_第2页
信息与计算科学-人员安排问题的讨论论文_第3页
人员安排问题的讨论摘要 本文用运筹与优化的相关知识对人员安排问题的优化进行讨论。根据题目给出的条件,已知本公司拥有五个开发项目并有五位科学家对每一个项目依据自己的感兴趣程度进行投标。为了解决每位科学家的感兴趣度不同的情况下人员安排优化的问题,我们做出人如下假设。首先考虑,当科学家人数和项目数相同的时候,根据 0-1 整数规划建立数学模型并运用 MATLAB 软件进行编译最终得出最优解。再考虑,当项目数不变,科学家人数减少时对人员分配的影响,通过加入虚拟科学家投标得出最优解。然后考虑,当一位科学家可以领导多个项目时。通过加入假想人分别得出最优解并通过比对得出最终解。接着再考虑,当某些科学家不可领导某些项目时对人员安排的影响,因此问题会变成人数大于项目数的非平衡问题,所以要加入虚拟项目并得出最优解。最后为了在完成人员安排时更切合实际,我加入另一指标,通过将两种指标综合考虑来完成最优安排。 关键词 人员安排, 最优解, 线性规划模型, MATLAB IDiscussion of staffing issuesAbstract This article discusses the optimization of staffing issues with the knowledge of operations research and optimization.According to the conditions given in the title, it is known that the company has five development projects and five scientists bid for each project according to their own level of interest. In order to solve the problem of optimizing personnel arrangement in the case where the interest of each scientist is different, we make the following assumptions. First consider that when the number of scientists and the number of projects are the same, write the coefficient matrix of the independent variable problem and transform the coefficient matrix by the Hungarian method to obtain the optimal solution. Consider again that when the number of projects remains the same and the number of scientists decreases, the impact on the allocation of personnel can be obtained by adding virtual scientist bids. Then consider when a scientist can lead mult...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部