求递推数列通项公式的常用方法归纳目录一、概述 ··································二、等差数列通项公式和前n项和公式 ··································1、等差数列通项公式的推导过程 ································2、等差数列前n项和公式的推导过程 ··································三、一般的递推数列通项公式的常用方法 ·································· 1、公式法 ·································· 2、归纳猜想法 ·································· 3、累加法 ·································· 4、累乘法 ·································· 5、构造新函数法(待定系数法) ·································· 6、倒数变换法 ·································· 7、特征根法 ·································· 8、不动点法 ································· 9、换元法 ································· 10、取对数法 ·································· 11、周期法 ·································· 一、概述 在高中数学课程内容中,数列作为离散函数的典型代表之一,不仅在高中数学中具有重要位置,而且,在现实生活中有着非常广泛的作用,同时,数列的教学也是培育观察、分析、归纳、猜想、逻辑推理以及运用数学知识提出问题、分析问题和解决问题的必不可少的重要途径。 数列这一章蕴含着多种数学思想及方法,如函数思想、方程思想,而且在基本概念、公式的教学本身也包含着丰富的数学方法,掌握这些思想方法不仅可以增进对数列概念、公式的理解,而且运用数学思想方法解决问题的过程,往往能诱发知识的迁移,使学生产生举一反三、融会贯穿的解决多数列问题。在这一章主要用到了以下几中数...