电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

中考数学中探索性问题的分析VIP免费

中考数学中探索性问题的分析_第1页
中考数学中探索性问题的分析_第2页
中考数学中探索性问题的分析_第3页
中考数学中探索性问题的分析近年来,探索性问题在中考试卷中频频出现,成为中考试卷中的一个亮点,探索性问题的形式多种多样,取材广泛,解决这类问题,往往需要我们展开观察、试验,类比、归纳、猜想等一系列的探索活动,通过探索性问题的解题活动,不仅有利于促进数学知识和数学方法的巩固和掌握,有利于思维品质的提高,也有利于自主探索、创新精神的培养。一、探索数据规律例1观察下列等式,你会发现什么规律?而而而将你猜想到的规律用只含一个字母的式子表示出来:_______。答案:例2观察下列顺序排列的等式:猜想:第n个等式(n为正整数)应该为_______。答案:。点评:在解决这种探索数据规律的问题时,我们通常是先考查一些特殊的情况,通过观察、分析、归纳、验证,然后得出一般性的结论,在解题的过程中,我们往往需要对题目中的数据进行适当变化,以使得数据的规律更加明显。二、探索函数关系例3用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形,设格点多边形的面积为S,它各边上格点的个数和为x。(1)图1中的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请写出S与x之间的关系式。多边形的序号①②③④…多边形的面积S22.534…各边上格点的个数和x4568…答:S=___________。(2)请你再画出一些格点多边形,使这些多边形内部都有而且只有2个格点,此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式是:S=_______。(3)请你继续探索,当格点多边形内部有且只有n个格点时,猜想S与x有怎样的关系?答:S=_______。答案:(1);(2);(3)点评:对函数关系的探索问题,往往要综合运用几何、方程、函数等有关知识去探索,综合性较强。解决这类问题的策略是在综合运用相关知识的基础上,重点去探索变量的变化情况和变量与一些不变量的关系,函数关系的确立常常是利用图形的面积、周长的数量关系或者通过相关线段的关系来完成的。在探索中,如果能有意识地对变量进行一定的特殊化处理或者对一些图形的特殊位置进行重点研究会给解题带来方便。三、探索数学对象是否存在例4已知一个二次函数的图象经过A(-1,0),B(0,3),C(4,-5)三点。(1)求这个函数的解析式及其顶点D的坐标;(2)这个函数的图象与x轴有两个交点,除点A外的另一个交点设为E,点O为坐标原点,在△AOB、△BOE、△ABE和△DBE这四个三角形中,是否有相似三角形?如果有,指出哪几对三角形相似,并加以证明;如果没有,请说明理由。简析:(1),,,所以。D(1,4)。(2)有一对三角形相似,△AOB∽△DBE。证明:由(1)得图像另一交点E(3,0)过D分别作x轴、y轴的垂线,可计算出BD=,DE=,BE=,而△DBE满足,所以△DBE是直角三角形。又中,AO=1,BO=3,且,,即,∠AOB=∠DBE=Rt∠,所以△AOB∽△DBE。点评:解决这类问题的基本策略是首先假设要探索的数学对象存在,然后运用题设的条件和这种假设进行探索,如果由此推出矛盾,则否定存在;如果推理探索中不出现矛盾,则肯定存在。在探索中有时需要根据题目的不同情形进行分类讨论。四、在操作中探索例5用两个全等的等边三角形△ABC和△ACD拼成菱形ABCD,把一个含角的三角尺与这个菱形叠合,使三角尺的角的顶点与点A重合,两边分别与AB,AC重合,将三角尺绕点A按逆时针方向旋转。(1)当三角尺的两边分别与菱形的两边BC、CD相交于点E,F时,(如图a),通过观察或测量BE、CF的长度,你能得出什么结论?并证明你的结论;(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图b),你在(1)中得到的结论还成立吗?简要说明理由。简析:(1)BE=CF。证明:在△ABE和△ACF中,因为∠BAE+∠EAC=∠CAF+∠EAC=,所以∠BAE=∠CAF。因为AB=AC,∠B=∠ACF=,所以△ABE△ACF(ASA)。所以BE=CF。(2)BE=CF仍然成立。根据三角形全等的判定公理,同样可以证明△ABE和△ACF全等,BE和CF是它们的对应边,所以BE=CF仍然成立。点评:这类在操作中进行探索的问题,要求我们以实际操作为问题背景去探索操作背后所包含...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部