电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

2024年一元二次方程归纳总结VIP免费

2024年一元二次方程归纳总结_第1页
2024年一元二次方程归纳总结_第2页
2024年一元二次方程归纳总结_第3页
一元二次方程归纳总结1、一元二次方程的一般式:,为二次项系数,为一次项系数,为常数项。2、一元二次方程的解法(1)直接开平方法(也可以使用因式分解法)①解为:②解为:③解为:④解为:(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程,用配方法将其变形为:①当时,右端是正数.因此,方程有两个不相等的实根:②当时,右端是零.因此,方程有两个相等的实根:③当时,右端是负数.因此,方程没有实根。注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:,并确定出、、②求出,并判断方程解的情况。③代公式:(要注意符号)3、一元二次方程的根与系数的关系ﻩ法1:一元二次方程的两个根为:所以:,ﻩﻩ定理:如果一元二次方程定的两个根为,那么:法2:如果一元二次方程定的两个根为;那么两边同时除于,展开后可得:;法3:如果一元二次方程定的两个根为;那么①②得:(余下略)常用变形:,,,,,等练习:【练习1】若是方程的两个根,试求下列各式的值:(ﻩ1);)2);(3);(4(.【练习2】已知关于的方程,根据下列条件,分别求出的值.(1)方程两实根的积为5;(2)方程的两实根满足.【练习3】已知是一元二次方程的两个实数根.(1)是否存在实数,使成立?若存在,求出的值;若不存在,请您说明理由.(ﻩ2)求使的值为整数的实数的整数值.4、应用题(1)平均增长率的问题:其中:为基数,为增长率,表示连续增长的次数,①②表示增长后的数量。(2)面积问题:注意平移思想的使用5、换元法例:解:令则原方程可化为:解得:①当时,求得:②当时,求得:(原方程共有4个解)练习:一元二次方程的解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型一、直接开方法:※※对于,等形式均适用直接开方法典型例题:例1、解方程:=0;例2、解关于x的方程:例3、若,则x的值为。针对练习:下列方程无解的是()A.B.C.D.类型二、因式分解法:※方程特点:左边可以分解为两个一次因式的积,右边为“0”,※方程形式:如,,典型例题:例1、的根为()ﻩABCD例2、若,则4x+y的值为。例3、方程的解为()A.B.C.D.例4、解方程:例5、已知,则的值为。类型三、配方法※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。典型例题:例1、试用配方法说明的值恒大于0。例2、已知x、y为实数,求代数式的最小值。例3、已知为实数,求的值。例4、分解因式:类型四、公式法⑴条件:⑵公式:,典型例题:例1、选择适当方法解下列方程:⑴⑵⑶⑷⑸说明:解一元二次方程时,首选方法是因式分解法和直接开方法、其次选用求根公式法;一般不选择配方法。说明:①对于二次三项式的因式分解,如果在有理数范围内不能分解,一般情况要用求根公式,这种方法首先令=0,求出两根,再写成=.②分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去.类型五、“降次思想”的应用⑴求代数式的值;⑵解二元二次方程组。典型例题:例1、已知,求代数式的值。例2、如果,那么代数式的值。例3、已知是一元二次方程的一根,求的值。例4、用两种不同的方法解方程组考点四、根的判别式根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。典型例题:例1、若关于的方程有两个不相等的实数根,则k的取值范围是。例2、关于x的方程有实数根,则m的取值范围是()A.B.C.D.例3、已知关于x的方程(1)求证:无论k取何值时,方程总有实数根;(2)若等腰ABC的一边长为1,另两边长恰好是方程的两个根,求ABC的周长。例4、已知二次三项式是一个完全平方式,试求的值.例5、为何值时,方程组有两个不同的实数解?有两个相同的实数解?考点五、应用解答题⑴“碰面”问题;⑵“复利率”问题;⑶“几何”问题;⑷“最值”型问题;⑸“图表”类问题典型例题:1、五羊足球队的庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?2、北京申奥成功,促进了一批产业的迅速发展,某通讯公司开发了一种新型通讯产品投放市场,根据计划,第一年投入资金...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

山水人家+ 关注
实名认证
内容提供者

读万卷书,行万里路。

最新文章

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部