细胞骨架(cytoskeleton)是指真核细胞中的蛋白纤维网络结构。发现较晚,主要是因为一般电镜制样采用低温(0-4℃)固定,而细胞骨架会在低温下解聚。直到 20 世纪 60 年代后,采用戊二醛常温固定,才逐渐认识到细胞骨架的客观存在。 细胞骨架不仅在维持细胞形态,承受外力、保持细胞内部结构的有序性方面起重要作用,而且还参与许多重要的生命活动(图 9-1),如:在细胞分裂中细胞骨架牵引染色体分离,在细胞物质运输中,各类小泡和细胞器可沿着细胞骨架定向转运;在肌肉细胞中,细胞骨架和它的结合蛋白组成动力系统;在白细胞的迁移、精子的游动、神经细胞轴突和树突的伸展等方面都与细胞骨架有关。另外,在植物细胞中细胞骨架指导细胞壁的合成。 细胞骨架由微丝(microfilament)、微管(microtubule)和中间纤维(intemediate filament)构成。微丝确定细胞表面特征,使细胞能够运动和收缩。微管确定膜性细胞器(membrane-enclosed organelle)的位置和作为膜泡运输的导轨。中间纤维使细胞具有张力和抗剪切力。 微丝、微管和中间纤维位于细胞质中,又称胞质骨架,它们均由单体蛋白以较弱的非共价键结合在一起,构成纤维型多聚体,很容易进行组装和去组装,这正是实现其功能所必需的特点。 广义的细胞骨架还包括核骨架(nucleoskeleton)、核纤层(nuclear lamina)和细胞外基质(extracellular matrix),形成贯穿于细胞核、细胞质、细胞外的一体化网络结构。 图9-1 细胞骨架的主要功能(图片来自 G. Karp 2002) 第一节 微丝 微丝(microfilament,MF)是由肌动蛋白(actin)组成的直径约7nm 的骨架纤维,又称肌动蛋白纤维actin filament。微丝和它的结合蛋白(association protion)以及肌球蛋白(myosin)三者构成化学机械系统,利用化学能产生机械运动。 一、分子结构 根据等电点的不同可将高等动物细胞内的肌动蛋白分为 3 类,α 分布于各种肌肉细胞中,β 和γ 分布于肌细胞和非肌细胞中。 肌动蛋白纤维是由两条线性排列的肌动蛋白链形成的螺旋,状如双线捻成的绳子(图9-2、3),肌动蛋白的单体为球形分子,称为球形肌动蛋白G-actin(globular actin),它的多聚体称为纤维形肌动蛋白F-actin (fibrous actin)。 图 9-2 微丝纤维的负染电镜照片 图 9-3 微丝纤维结构模型 肌动蛋白在进化上高度保守,酵母和兔子肌肉的肌动蛋白有 88%的同源性。不同类型肌肉细胞的 α-肌动蛋白分子一级结构(约 4...