山东省考数量关系常用知识点总结第一章带入与排除法一,直接带入法直接带入法常用于多位数问题,不定方程问题,同余问题,年龄问题,周期问题,复杂行程问题和和差倍比问题,并与其它运算方法相结合,带入排除法不仅仅意味着把选项带入题干,而且在计算过程中,一边计算一边比较答案选项,很可能算到一半答案就出来了。二,倍数特性法倍数特性法是一种特殊的带入排除法1,2,5—后一位;4,25—后两位;8,,125—后三位3—数字和除以三;9—数字和除以97—末一位的两倍与剩下的数之差为7的倍数7--末三位与剩下数的差(大数减小数)是7的倍数11—奇数位之和与偶数位之和的差是11的倍数(1)直接倍数法两个数的和为a,差为b,则两个数分别为a+b/2,a-b/2.(2)因子倍数法当题干中涉及小数的时候,相乘不一定保留原来的倍数关系,2和5因子相乘后会消失,但是3,7,9,11,13等质因子会一直存在(3)比例倍数法(和差倍比)若a:b=m:n,则说明a占m份,是m的倍数;b占n份是n的倍数,(m与n互质)a+b占m+n份,是m+n的倍数,a-b占m-n份是m-n的倍数三,综合特性法大小特性,奇偶特性,尾数特性,余数特性,幂次特性,质数特性(1)两个数字和差为奇,二者奇偶相反;两个数字和差为偶,二者奇偶相同。(2)两个数字的和为奇数,二者差也为奇数;两个数字和为偶数,二者差也为偶数(3)正整数加,减,乘运算中,每个数最后N位,经过同样运算,可以得到结果最后N位经典例题:奇偶运算基本法则【基础】奇数±奇数=;偶数±偶数=;偶数±奇数=;奇数±偶数=。【推论】一、任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。二、任意两个数的和或差是奇数,则两数奇偶相反;和或差是偶数,则两数奇偶相同。倍数关系核心判定特征如果,则a是m的倍数;b是n的倍数。如果,则a是m的倍数;b是n的倍数。如果,则应该是m±n的倍数。【例1】两个数的差是2345,两数相除的商是8,求这两个数之和?()A.2353B.2896C.3015D.3456【解析】:两个数的差为奇数,所以两个数的和也应该为奇数,排除掉B和D,两数相除商为8,即a:b=8:1,所以a+b是9的倍数,所以选C【例2】:一单位组织员工乘车去泰山,要求每辆车上的员工数相等。起初,每辆车22人,结果有一人无法上车;如果开走一辆车,那么所有的旅行者正好能平均乘到其余各辆车上,已知每辆最多乘坐32人,请问单位有多少人去了泰山?()A.269B.352C.478D.529【解析】:每辆车22人,结果有一人无法上车,即总人数除以22余1,也就是总人数-1能被22整除,即能同时被2和11整除,首先排除掉B和C,A和D减1后都能被2整除,只要看下能不能被11整除即可,所以答案为D.【例3】某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?A.329B.350C.371D.504【解析】:这是2011年的国考题。如果设去年男员工人数为x时,那今年男员工人数则为(1-6%)x=0.94x。也就是说今年男员工人数含有0.94的因子,即能被0.94整除,答案选A。所以熟练掌握数字特性法对于解决某一类数学运算非常有效,所以考生须熟记几个非常常用的特性,比如因子、倍数、因子、比例特性。【例22】(江苏2006B-76)在招考公务员中,A、B两岗位共有32个男生、18个女生报考。已知报考A岗位的男生数与女生数的比为5:3,报考B岗位的男生数与女生数的比为2:1,报考A岗位的女生数是()。A.15B.16C.12D.10【答案】C,【解析】报考A岗位的男生数与女生数的比为5:3,所以报考A岗位的女生人数是3的倍数,排除选项B和选项D;代入A可发现不符合题意,所以选择C。ﻫ【例23】(上海2004-12)下列四个数都是六位数,X是比10小的自然数,Y是零,一定能同时被2、3、5整除的数是多少?()A.XXXYXXB.XYXYXYC.XYYXYYD.XYYXYX【答案】B,【解析】因为这个六位数能被2、5整除,所以末位为0,排除A、D;因为这个六位数能被3整除,这个六位数各位数字和是3的倍数,排除C,选择B。【例24】(山东2004-12)某次测验有50道判断题,每做对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问答对题数和答错题数(包括不...