24/10/24时间序列分析本章结构平稳性检验纯随机性检验24/10/24时间序列分析2.1平稳性检验特征统计量平稳时间序列的定义平稳时间序列的统计性质平稳时间序列的意义平稳性的检验24/10/24时间序列分析概率分布概率分布的意义随机变量族的统计特性完全由它们的联合分布函数或联合密度函数决定时间序列概率分布族的定义实际应用的局限性TtttmmxxxFmmtttm,,,),,,2,1()},,,({2121,,,2124/10/24时间序列分析特征统计量均值方差自协方差自相关系数)(xxdFEXttt)()()(22xdFxXEDXttttt))((),(ssttXXEststDXDXstst),(),(24/10/24时间序列分析平稳时间序列的定义严平稳严平稳是一种条件比较苛刻的平稳性定义,它认为只有当序列所有的统计性质都不会随着时间的推移而发生变化时,该序列才能被认为平稳。宽平稳宽平稳是使用序列的特征统计量来定义的一种平稳性。它认为序列的统计性质主要由它的低阶矩决定,所以只要保证序列低阶矩平稳(二阶),就能保证序列的主要性质近似稳定。24/10/24时间序列分析平稳时间序列的统计定义满足如下条件的序列称为严平稳序列满足如下条件的序列称为宽平稳序列),,,(),,,(21,21,2121mtttmtttxxxFxxxFmm有,正整数,正整数Ttttmm,,,,21TtskksttskkstTtEXTtEXtt且,为常数,,,),(),()3,)2,)1224/10/24时间序列分析严平稳与宽平稳的关系一般关系严平稳条件比宽平稳条件苛刻,通常情况下,严平稳(低阶矩存在)能推出宽平稳成立,而宽平稳序列不能反推严平稳成立特例不存在低阶矩的严平稳序列不满足宽平稳条件,例如服从柯西分布的严平稳序列就不是宽平稳序列当序列服从多元正态分布时,宽平稳可以推出严平稳24/10/24时间序列分析平稳时间序列的统计性质常数均值自协方差函数和自相关函数只依赖于时间的平移长度而与时间的起止点无关延迟k自协方差函数延迟k自相关系数)0()(kk为整数kkttk),,()(24/10/24时间序列分析自相关系数的性质规范性对称性非负定性非唯一性24/10/24时间序列分析平稳时间序列的意义时间序列数据结构的特殊性可列多个随机变量,而每个变量只有一个样本观察值平稳性的重大意义极大地减少了随机变量的个数,并增加了待估变量的样本容量极大地简化了时序分析的难度,同时也提高了对特征统计量的估计精度24/10/24时间序列分析平稳性的检验(图检验方法)时序图检验根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征自相关图检验平稳序列通常具有短期相关性。该性质用自相关系数来描述就是随着延迟期数的增加,平稳序列的自相关系数会很快地衰减向零24/10/24时间序列分析例题例2.1检验1964年——1999年中国纱年产量序列的平稳性例2.2检验1962年1月——1975年12月平均每头奶牛月产奶量序列的平稳性例2.3检验1949年——1998年北京市每年最高气温序列的平稳性24/10/24时间序列分析例2.1时序图24/10/24时间序列分析例2.1自相关图24/10/24时间序列分析例2.2时序图24/10/24时间序列分析例2.2自相关图24/10/24时间序列分析例2.3时序图24/10/24时间序列分析例2.3自相关图24/10/24时间序列分析2.2纯随机性检验纯随机序列的定义纯随机性的性质纯随机性检验24/10/24时间序列分析纯随机序列的定义纯随机序列也称为白噪声序列,它满足如下两条性质TststststTtEXt,,,0,),()2(,)1(224/10/24时间序列分析标准正态白噪声序列时序图24/10/24时间序列分析白噪声序列的性质纯随机性各序列值之间没有任何相关关系,即为“没有记忆”的序列方差齐性根据马尔可夫定理,只有方差齐性假定成立时,用最小二乘法得到的未知参数估计值才是准确的、有效的00k(k),)0(2tDX24/10/24时间序列分析纯随机性检验检验原理假设条件检验统计量...