电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

几何直观学习心得VIP免费

几何直观学习心得_第1页
几何直观学习心得_第2页
几何直观学习心得_第3页
几何直观教学学习心得体会开元小学韩金玲9月30日,我们在黄山实验小学,在主持人牛向华老师的带领下,参加了《几何直观能力培养》这一教学研讨会。会议开始之前,李鹏主任给我们布置了一个作业,让我们写一写你认为几何直观是指哪些方面?你在教学中是如何培养学生的直观能力的?刚开始我的概念模糊,错以为是指几何图形的直观培养,诸如:长方形,正方形,三角形等平面图形和长方体正方体等立体图形,直观体验和空间能力的培养,所以回答的偏离了本次交流的主题。经过不断的听课研究,听取了实验二小三年级杨清秀老师的《简单的搭配问题》,开元小学梁杰老师的《植树问题》,实验一小刘元跃老师的《简单的排列》,王莹老师的《稍复杂的分数乘法应用题》,并听取了夏冬梅,赵红叶,韩梅老师的专题发言一下子就豁然开朗了,哦,原来如此。原来,我们已经尝试过不少的运用几何直观来解决复杂问题的实践,只是理解的一个概念错误而已,看来还是研究课标不够啊!以后要改变这种只是抄课标的学习方法,要在研究课标方面多下功夫,多写一些关于课标的自己的实践方面的问题或思考。我迅速联系自己的教学实践一下子想到了一年级学过的比大小、移多补少问题,二年级的倍数问题,除法问题,不少低年级的难以理解的问题不都是通过图形直观的展示出来,再让孩子们充分理解的吗?几何直观确实帮助孩子们从根本上理解了问题的内涵,明白了算理。还有倍数问题,相遇问题,等等这不都是利用几何直观解决比较难的问题吗?经过观课,听取主题发言,我的思路渐渐清晰,并回忆实践中自己的一些有关教学片段。下面我将从三个方面谈谈在参加研讨会的一些体会:一、对于几何直观的具体含义几何直观是指利用图形描述和分析数学问题,探索解决问题的思路帮助理解较难的重点。数学是抽象的科学,对于小学生特别是低年级学生来说,还是以具象思维为主,如何让学生理解抽象复杂的数量关系,需要在学生心中搭建勾连的桥梁,那就是几何直观。但经过了解我们也发现,在实际的学习当中学生并不会用图形帮助自己分析和解决问题,这主要是因为在教学中老师对此关注的很少,学生不习惯使用,再有即使是直观图形的呈现,也不是与生俱来的,需要用具体的例子在对学生进行逐步培养,才能让学生真正认识到几何直观的价值,学会其中的方法。我对自己的课堂教学进行了反思。我查阅了课标中所说的几何直观,是借助图形分析和解决问题中的“图形”具有更广泛的含义,几何直观并不仅指简单的图形直观。在中小学数学中,几何直观具体表现为如下四种表现形式:一是实物直观,二是简约符号直观,三是图形直观,四是替代物直观。实物直观。即实物层面的几何直观,是指借助与研究对象有着一定关联的现实世界中的实际存在物,借助其与研究对象之间的关联,进行简捷、形象的思考,获得针对研究对象的深刻判断。简约符号直观,即简约符号层面的几何直观,是在实物直观的基础上,进行一定程度的抽象,所形成的、半符号化的直观。图形直观是以明确的几何图形为载体的几何直观。替代物直观则是一种复合的几何直观,既可以依托简捷的直观图形,又可以依托用语言或学科表征物所代表的直观形式,还可以是实物直观、简约符号直观、图形直观的复合物。“替代物直观”则是在现实模型基础上的进一步抽象,已经具备一定的抽象高度。以计数器为例,与“小棒”相比,计数器已经将数位的含义明确表示出来(具有普适性和公共的约定性),而不是某些人的人为规定。借助几何直观可以把复杂的数学问题变得简明、形象,促进数学的理解;通过图形进行观察,有利于信息回忆和方法的促成;根据直观认识来研究图形的性质和相关问题有助于数学问题结构的揭示。可以说,几何直观不仅解决“图形与几何”的学习中存在的问题,并且贯穿在整个数学学习过程中。二、浅谈几何直观在教学中的应用(一)在困惑中产生画图的需求,初步培养学生借助几何直观理解和分析问题的意识。新课程强调:有效的教学活动是学生学与教师教的统一,学在前,教在后,教只有贴合学,方能有效。基于此认识,我认为数学教学,一定要从学生的需要与困惑出发。如果教师以自己的机械指导过度牵制...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部