(E, ν) 与(K, G)的转换关系如下: )21(3EK )1(2EG (7.2) 当ν 值接近0.5 的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1 和7.2 分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 干密度(kg/m3) E(GPa) ν K(GPa) G(GPa) 砂岩 19.3 0.38 26.8 7.0 粉质砂岩 26.3 0.22 15.6 10.8 石灰石 2090 28.5 0.29 22.6 11.1 页岩 2210-2570 11.1 0.29 8.8 4.3 大理石 2700 55.8 0.25 37.2 22.3 花岗岩 73.8 0.22 43.9 30.2 土的弹性特性值(实验室值)(Das,1980) 表7.2 干密度(kg/m3) 弹性模量E(MPa) 泊松比ν 松散均质砂土 1470 10-26 0.2-0.4 密质均质砂土 1840 34-69 0.3-0.45 松散含角砾淤泥质砂土 1630 密实含角砾淤泥质砂土 1940 0.2-0.4 硬质粘土 1730 6-14 0.2-0.5 软质粘土 1170-1490 2-3 0.15-0.25 黄土 1380 软质有机土 610-820 冻土 2150 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要 5中弹性常量:E1, E3, ν12,ν13 和G13;正交各向异性弹性模型有9 个弹性模量E1,E2,E3, ν12,ν13,ν23,G12,G13 和G23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7 给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3 Ex(GPa) Ey(GPa) νyx νzx Gxy(GPa) 砂岩 43.0 40.0 0.28 0.17 17.0 砂岩 15.7 9.6 0.28 0.21 5.2 石灰石 39.8 36.0 0.18 0.25 14.5 页岩 66.8 49.5 0.17 0.21 25.3 大理石 68.6 50.2 0.06 0.22 26.6 花岗岩 10.7 5.2 0.20 0.41 1.2 流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量Kf,如果土粒是可压缩的,则要用到比奥模量 M。纯净水在室温情况下的 Kf 值是 2 Gpa。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的 Kf,不用折减。这是由于对于大的 Kf 流动时间步长很小,并...