2.1 平面向量的实际背景及基本概念2.1.3 相等向量与共线向量 问题提出 1. 向量与数量有什么联系和区别? 向量有哪几种表示?联系:向量与数量都是有大小的量;区别:向量有方向且不能比较大小,数 量无方向且能比较大小 .向量可以用有向线段表示,也可以用字母符号表示 . 2. 什么叫向量的模?零向量和单位向量分别是什么概念? 向量的模:表示向量的有向线段的长度 .零向量:模为 0 的向量 . 单位向量:模为 1 个单位长度的向量 . 3. 引进向量概念后,我们就要建立相关的理论体系,为了研究的需要,我们必须对向量中的某些现象作出合理的约定或解释,特别是两个向量的相互关系 . 对此,我们将作些研究 . 探究(一):相等向量与相反向量 思考 1 :向量由其模和方向所确定 . 对于两个向量 a 、 b ,就其模等与不等,方向同与不同而言,有哪几种可能情形? 模相等,方向相同;模相等,方向不相同;模不相等,方向相同;模不相等,方向不相同; 思考 2 :两个向量不能比较大小,只有“相等”与“不相等”的区别,你认为如何规定两个向量相等?长度相等且方向相同的向量叫做相等向量 . 向量 a 与 b 相等记作 a=b. 思考 3 :用有向线段表示非零向量 和 ,如果 ,那么 A 、 B 、 C 、D 四点的位置关系有哪几种可能情形?ABCD=uuuruuurABuuurCDuuurABCDABCD 思考 4 :对于非零向量 和 ,如果 ,通过平移使起点 A 与 C 重合,那么终点 B 与 D 的位置关系如何?ABCD=uuuruuurABuuurCDuuur长度相等且方向相反的向量叫做相反向量 .思考 5 :非零向量 与 称为相反向量,一般地,如何定义相反向量?ABuuurBAuuurDCBABA 思考 6 :如果非零向量 与 是相反向量,通过平移使起点 A 与 C 重合,那么终点 B 与 D 的位置关系如何? ABuuurCDuuurDCBABA 探究(二):平行向量与共线向量 思考 1 :如果两个向量所在的直线互相平行,那么这两个向量的方向有什么关系?思考 2 :方向相同或相反的非零向量叫做平行向量,向量 a 与 b 平行记作 a//b ,那么平行向量所在的直线一定互相平行吗?方向相同或相反思考 3 :零向量 0 与向量 a 平行吗?规定:零向量与任一向量平行 . 思考 4 :将向量平移,不会改变其长度和方向 . 如图,设 a 、 b 、 c 是一组平行向量,任作一条与向量 a 所在直线平行的直线 l ,在 l 上任取一点 O ,分别作 ...